
Official Problems 42nd Balkan Mathematical Olympiad
with Solutions Sarajevo, April 25 – 30, 2025

Problem 1. An integer n ą 1 is called good if there exists a permutation
a1, a2, a3, . . . , an of the numbers 1, 2, 3, . . . , n, such that:

• ai and ai`1 have different parities for every 1 ď i ď n ´ 1;
• the sum a1 ` a2 ` ¨ ¨ ¨ ` ak is a quadratic residue modulo n for every 1 ď k ď n.

Prove that there exist infinitely many good numbers, as well as infinitely many positive
integers which are not good.
Remark: Here an integer x is considered a quadratic residue modulo n if there exists
an integer y such that x ” y2 pmod nq.

Solution
We will split the problem into two parts - the first one proving there are infinitely many
numbers that are not good, and the second part proving there are infinitely many good
numbers.

Infinitely many numbers are not good

Proof #1

We will show that all numbers n “ 4m with m P Z` are not good. Indeed, consider the last
sum in the given condition

a1 ` a2 ` ¨ ¨ ¨ ` an “ 1 ` 2 ` ¨ ¨ ¨ ` n “
4m p4m ` 1q

2

Suppose that there exists x P Z such that

4m p4m ` 1q

2
” x2

pmod4mq ðñ 4m ” 2x2
pmod2 ¨ 4mq ðñ 2 ¨ 4m | 4m ´ 2x2

This means that 4m | 2x2, that is 22m´1 | x2, so 2m | x. Let x “ c ¨ 2m with c P Z. Thus

4m ” 2 p2mcq2 ” 2c2 ¨ 4m ” 0 pmod2 ¨ 4mq

this implies that 4m ” 0 pmod 2 ¨ 4mq, which is not true. This proves the second part of the
problem, i.e. that there are infinitely many numbers that are not good.
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Proof #2.1

We will show that all numbers n “ 4m with m P Z` are not good. Assume otherwise and
let ak “ 2 for some 1 ď k ď n.

Let Si “ a1 ` a2 ` ¨ ¨ ¨ ` ai (if i ă 1, Si is the empty sum). Let Sk´1 ” x2 pmod 4mq and
Sk ” y2 pmod 4mq. Thus x2 ` 2 ” y2 pmod 4mq, which means that x and y have the same
parity. Now 4m | px´yqpx`yq `2, but since 4 | px´yqpx`yq, we get 4 | 2, a contradiction.

Proof #2.2

We will show that all numbers n “ 2m with m P Z`, m ą 3 are not good. For the sake of
contradiction, assume that n is good.

Lemma. Let n “ 2m with m P Z`, m ą 3 and let r be an odd quadratic residue modulo
n. Then r ” 1 pmod 8q.

Proof. Since r is a quadratic residue, we know that r ” t2 pmod 2mq for some odd
integer t. Then we have that 2m | r ´ t2, and because m ą 3, we have that 8 | r ´ t2. Since
t is odd, t2 ” 1 pmod 8q, so we get that r ” 1 pmod 8q. ˝

Claim. Let n “ 2m with m P Z`, m ą 3 and let r be a quadratic residue modulo n. If
v2prq ď m ´ 3 then r “ 4a ¨ p8b ` 1q for some nonnegative integers a and b.

Proof. If r is odd, from the previous lemma we have that r “ 8b ` 1 (a “ 0) for some
integer b. If r “ 2cr1 for some 1 ď c ď m ´ 3 and odd r1, we get that 2m | r ´ k2 for some
integer k. That is, we have 2m | 2cr1 ´ k2. Let k2 “ 22tk2

1 for some nonnegative integer t and
odd integer k1. Since 2c | k2, we get 2t ě c. If 2t ą c, it follows that v2p2cr1 ´ k2q “ c ă m,
a contradiction. Therefore c “ 2t and so v2prq is even. Now we have that 2m | 2cr1 ´ 2ck2

1,
thus 2m´c | r1 ´ k2

1. Since m ´ c ě 3, we have that 8 | r1 ´ k2
1 and because k1 is odd we get

r1 ” 1 pmod 8q. ˝

Assume 2m with m ą 3 is good with some permutation a1, a2, . . . , a2m and let ai “ 2, for
some i ą 1 (from the claim we know that 2 is not a quadratic residue modulo 2m). Consider
the following cases:

Case 1. If 2m´2 | a1 ` a2 ` ¨ ¨ ¨ ` ai´1. Let a1 ` a2 ` ¨ ¨ ¨ ` ai´1 “ 2m´2c for some integer c.
Then v2pa1 ` a2 ` . . . ` aiq “ v2p2m´2c ` 2q “ 1 and from the claim this is not a quadratic
residue, a contradiction.

Case 2. If 2m´2 | a1 ` a2 ` ¨ ¨ ¨ ` ai. Let a1 ` a2 ` ¨ ¨ ¨ ` ai “ 2m´2c for some integer c.
Then v2pa1 ` a2 ` . . .` ai´1q “ v2p2m´2c´ 2q “ 1 and from the claim this is not a quadratic
residue, a contradiction.

Case 3. Otherwise, the claim implies a1`a2`¨ ¨ ¨`ai´1 “ 4k1p8l1`1q and a1`a2`¨ ¨ ¨`ai “

4k2p8l2 ` 1q for some nonnegative integers k1, k2, l1, l2. Then we have 4k1p8l1 ` 1q ` 2 “

4k2p8l2 ` 1q. Looking at the equation modulo 4, we get that at least one of k1, k2 is 0. If
exactly one of k1, k2 is equal to 0 we get a contradiction modulo 2. Therefore k1 “ k2 “ 0
and thus 8l1 ` 3 “ 8l2 ` 1, which is impossible.
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Infinitely many numbers are good

Proof #1

Now let n “ p be a prime number of the form 4k ` 3, k P Z. Consider the numbers

12, 22, . . . ,

ˆ

p ´ 1

2

˙2

, p ´ 12, p ´ 22, . . . , p ´

ˆ

p ´ 1

2

˙2

.

Clearly, in this sequence, no two numbers are congruent modulo p. Indeed, suppose that
there is i2 ” j2 pmod pq with 1 ď i ă j ď

p´1
2

then p | pj ´ iqpj ` iq. But 0 ă j ` i ă p,
0 ă j´ i ă p, a contradiction. From there, it follows that the first p´1

2
numbers have distinct

remainders in modulo p. We reason similarly for the last p´1
2

numbers. Next suppose that
there is i2 ” p´ j2 pmod pq with 1 ď i, j ď

p´1
2

then p | i2 ` j2. According to the well known
properties of quadratic residues modulo a prime p “ 4k ` 3, we conclude that p | i and p | j,
which is also a contradiction. Thus, the claim is proved.
Notice that for 1 ď i ď

p´1
2

, two numbers i2 and p ´ i2 have different parity remainders in
modulo p (since the sum of the two remainders is p, which is odd). Consider the remainder
of 12, 22, . . . ,

`

p´1
2

˘2 when divided by p. We denote by a1, a2, . . . , am the odd remainders and
by b1, b2, . . . , bn the even remainders; note that m ` n “

p´1
2

. Finally, consider the following
permutation:

a1, p ´ a1, a2, p ´ a2, . . . , am, p ´ am, p, b1, p ´ b1, b2, p ´ b2, . . . , bn, p ´ bn

Obviously, according to the above arguments, two consecutive numbers in the above per-
mutation have different parity, and the sum of any first i numbers in the permutation is
either congruent to 0 or congruent to some number in t12, 22, . . . ,

`

p´1
2

˘2
u, which is clearly a

quadratic residue modulo p. Thus, the constructed permutation as above satisfies the given
conditions. Since there are infinitely many primes of the form p “ 4k ` 3, we have proved
that there are infinitely many good numbers as well.

Proof #2

Let n be an odd integer. We will prove that the number 2n is good. Consider the numbers:

1, 3 ` n, 5, 7 ` n, 9, 11 ` n, . . . , 4n ´ 1 ` n.

It can be easily proven that no two numbers in this sequence are congruent modulo 2n. Since
there are 2n numbers in the sequence, they form a complete residue system modulo 2n. Also,
note that the sum of the first k (1 ď k ď 2n) numbers in the sequence is a quadratic residue
modulo 2n (it is a quadratic residue modulo n as it is congruent to 1` 3` . . .` 2k ´ 1 “ k2

modulo n and since x2 ` n ” px ` nq2 pmod 2nq for all integers x, it is also a quadratic
residue modulo 2n). The parity condition is also satisfied (even after reduction by modulo
2n, since 2n is even). Finally, taking the numbers modulo 2n gives the desired permutation.
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Proof #3

Let p ą 2 be a prime number of the form p “ 3k ` 2, k P Z. We will prove that the number
n “ 2p is good. Consider the numbers:

13, 23, 33, . . . , p2pq
3.

It is well known that if p ” 2 pmod 3q then the above numbers form a complete residue
system modulo p. It can easily be proven that they also form a complete residue system
modulo 2p (by also taking parity into account). Now, since 13`23`. . .`k3 “ p1`2`. . .`kq2,
we get that the sum of the first k (1 ď k ď 2p) numbers in the sequence modulo p is
a quadratic residue modulo p. The parity condition is also satisfied (even after reduction
modulo n “ 2p, since 2p is even). Finally, taking the numbers modulo n gives the desired
permutation.
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Problem 2. Let △ABC be an acute-angled triangle with orthocentre H and let D be
an arbitrary interior point on side BC. Suppose E and F are points on the segments
AB and AC respectively such that the quadrilaterals ABDF and ACDE are cyclic,
and let BF and CE intersect at P . Let L be the point of line HA such that LC
is tangent to the circumcircle of triangle △PBC at point C. Let lines BH and CP
intersect at X. Prove that D,L and X are collinear.

Solution 1

A

B CD

E
F

P

H

L

X

Y

We have =PCD “ =ECD “ =EAD and =PBD “

=FBD “ =FAD, therefore

=BPC “ 180˝
´=EAD´=FAD “ 180˝

´=BAC “ =BHC,

meaning that BHPC is cyclic.
We also have =PFD “ =BFD “ =BAD “ =PCD
showing that DPFC is cyclic. Then, using that
BAFD is also cyclic, we have

=DPC “ =DFC “ =ABC.

Let Y be the point of intersection of AH with the
circumcircle of BHPC. Then

=Y PC “ =Y HC “ =ABC “ =DPC

showing that D belongs on Y P .
Finally, applying Pascal’s theorem on the hexagon
BHY PCC, we get that X “ BH X PC,L “ HY X

CC and D “ Y P X CB are collinear, as required.

white
test

Solution 2
As in Solution 1, we introduce the point Y and prove that the quadrilateral BHPC is cyclic
and that points Y,D, P are collinear. Define point Z as the second intersection of pCXHq

with the line DX.
Since =HZD “ =HZX “ =HCX “ =HCP “ =HY P “ =HYD, we get the points
H,D,Z, Y are concyclic. We also know that =DZC “ =XZC “ =XHC “ =BY C “
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A

B
C

H

D

E F

P

Y

X

Z

=LCB, where the last equality holds because LC is tangent to pBHPCq. This implies that
the circles pBY Cq and pZDCq share a common tangent at the point C.
Finally, applying the radical axis theorem to the circles pZDCq, pHDZY q and pBHPCq, we
conclude that the line XD passes through the point L, finishing the proof.

Solution 3
Let HA and HC be the feet of the altitudes from A and C, respectively. Also, let BA and
BH meet CL at Z and T respectively.
We prove that BCPH is cyclic as in Solution 1. CHAHCA and CDEA are cyclic, so
=BHAHC “ =BDE “ =BAC. Since CL is tangent to pBHPCq, we have =LCB “ 180˝ ´

=BHC “ =BAC. We obtained =BHAHC “ =BDE “ =BCL, so HCHA ∥ ED ∥ LC.
Projecting from C, we obtain pB,X;H,Zq “ pB,E;HC , T q. From HCHA ∥ ED ∥ TC we
have pB,E;HC , T q “ pB,D;HA, Cq, which can be seen by applying Thales’ theorem or by
projecting from infinity.
If we denote the intersection of LD and BZ as X 1, projecting from L we get pB,X 1;H,Zq “

pB,D;HA, Cq.
Combining the above, we have pB,X;H,Zq “ pB,D;HA, Cq “ pB,X 1;H,Zq. It is well-
known that, with 3 fixed points and a fixed cross-ratio, the fourth point is uniquely deter-
mined. This implies X ” X 1 and we are done.
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A

B
C

D

E

F
P

H

HA

HC

L

Z

X

T

Solution 4
Same as in Solution 3, we prove that HCHA ∥ ED ∥ l, where l is the tangent to pBHPCq

at C. Now define L as the intersection of AH and DX. Apply Desargues’s theorem on
triangles △BHAHC and △XLC. Since LHA, CHC and BX are concurrent at H, we obtain
that the intersection of BHC and CX which is E, the intersection of BHA and LX which is
D and the intersection of LC and HAHC are collinear. However, since DE ∥ HAHC , LC is
also parallel to these lines, therefore it coincides with the tangent and we are done.

Solution 5
Let HA, HB, HC to be the feet of the altitudes. We again obtain that BHCP is cyclic and
that DE ∥ LC. We want to prove LC,AH and DX are concurrent. Applying Trigonometric
Ceva’s theorem to △AED, we need to prove:

sin=ABH

sin=HBC
¨
sin=LDB

sin=LDE
¨
sin=CED

sin=CEB
“

cos=BAC

cos=ACB
¨
sin=LDC

sin=DLC
¨
sin=CAD

sin=ADB
.

From law of sines in △ADC and △ADB, the last expression is equal to:

cos=BAC

cos=ACB
¨
LC

CD
¨
CD ¨ sin=ACB ¨ AD

AB ¨ sin=ABC ¨ AD
.

However, LS “
HAC

cos=BAC
“ AC¨cos=ACB

cos=BAC
and we get:

cosBAC

cosACB
¨
AC ¨ cosACB

cosBAC
¨

sinACB

AB ¨ sinABC
“ 1.
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Problem 3. Find all functions f : R Ñ R such that, for all real numbers x and y,

fpx ` yfpxqq ` y “ xy ` fpx ` yq.

Solution 1.
Let P px, yq denote the given relation. If there is an a P R such that fpaq “ 0, then P pa, yq

gives that y “ ay ` fpa ` yq, and so f must be linear. Then we can easily check and get
that the only linear solutions are fpxq “ x and fpxq “ 2 ´ x (x P R).
Now suppose that fpxq ‰ 0 for all real numbers x. From P px ´ y, yq we get that:

fpx ´ y ` yfpx ´ yqq “ ´y2 ` ypx ´ 1q ` fpxq.

Since fptq ‰ 0 for all real numbers t, it follows that ´y2 ` ypx ´ 1q ` fpxq ‰ 0 for all real
numbers x, y, and so, its discriminant (as a polynomial in y) must be negative. That is,
px ´ 1q2 ` 4fpxq ă 0, which gives us

fpxq ă ´
px ´ 1q2

4
ď 0

for all real numbers x. Since px ` 1q2 ě 0 implies that ´
px´1q2

4
ď x, we see that

fpxq ă ´
px ´ 1q2

4
ď x

for all real numbers x. Now from P px, yq for y ą 0 and x P R, we get that

xy ´ y ` fpx ` yq “ fpx ` yfpxqq ă x ` yfpxq ă x ´ y
px ´ 1q2

4

and so
fpx ` yq ă x ` y ´ ypx `

px ´ 1q2

4
q “ x ` y ´ y

px ` 1q2

4
.

Setting x “ ´y above, we get that:

fp0q ă ´y
p´y ` 1q2

4
.

for all positive real numbers y. Letting y Ñ `8 above, we reach a contradiction. Hence,
the only solutions in this functional equation are fpxq “ x and fpxq “ 2 ´ x.
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Solution 2.
Let P px, yq denote the given relation. Similarly to the first solution, if a root exists (fpaq “ 0
for any a), we get that the function is linear and that the two solutions are fpxq “ x and
fpxq “ 2 ´ x. Assertion P px, c ´ xq gives us the following relation:

fpx ` pc ´ xqfpxqq “ pc ´ xqpx ´ 1q ` fpcq “ ´x2
` pc ` 1qx ` pfpcq ´ cq

The right hand side of the expression is a quadratic equation in x with the discriminant
∆ “ ∆pcq “ pc` 1q2 ` 4pfpcq ´ cq “ pc´ 1q2 ` 4fpcq. Therefore, if there exists a c such that
pc ´ 1q2 ` 4fpcq ě 0, the quadratic equation has a real solution which implies the existence
of a root, in which case we are done.
If fp1q “ 0, then we found a root and are done. If fp1q “ 1, then by taking c “ 1 we obtain
that ∆p1q “ 4, implying the existence of a root. We now check the case when fp1q “ ´1.
From the assertion P p1 ´ x, xq, we obtain:

fp1 ´ x ` xfp1 ´ xqq “ ´x2
´ 1

Plugging in x “ 1, in the above assertion, we obtain that fpfp0qq “ ´2. Now plugging in
x “ 1´fp0q in the above assertion we get that fpfp0q`p1´fp0qqfpfp0qqq “ ´p1´fp0qq2´1,
simplifying and utilizing fpfp0qq “ ´2 we obtain fp3fp0q ´ 2q “ ´fp0q2 ` 2fp0q ´ 2. Note
that if fp0q ě 0, we have that ∆p0q “ 1 ` 4fp0q ą 0, implying the existence of a root,
so assume that fp0q ă 0. Now using c “ 3fp0q ´ 2 for our discriminant value, we obtain
∆p3fp0q ´ 2q “ p3fp0q ´ 3q2 ` 4fp3fp0q ´ 2q “ 9pfp0q ´ 1q2 ` 4p´fp0q2 ` 2fp0q ´ 2q “

5fp0q2 ´ 10fp0q ` 1 ą 0, implying the existence of a root, and resolving the case when
fp1q “ ´1.

Now assume that fp1q R t0, 1,´1u. From P p1, yq, we obtain the relation that fp1`yfp1qq “

fp1 ` yq. As fp1q ‰ 0, we can inductively show that fp1 ` yfp1qkq “ fp1 ` yq for all k P Z.
Since fp1q R t1,´1u, there exists an unbounded sequence an such that fpanq is constant.
Namely, one can take an “ 1 ` fp1q2n if |fp1q| ą 1, and an “ 1 ` fp1q´2n if |fp1q| ă 1,
both times it holds that fpanq “ fp2q. The value of the discriminant along this sequence is
∆panq “ pan ´1q2 `4fpanq “ pan ´1q2 `4fp2q, and since an is unbounded this there exists n
where the value of the discriminant is positive, yielding our root. This finishes the problem.

Solution 3.
Let P px, yq denote the given relation. As in the previous solutions, if a root exists, then we
are done. From P p1, yq we obtain fp1 ` ycq “ fp1 ` yq, where we have put c “ fp1q. From
the substitution P p1 ` x, yq, we get:

fp1 ` x ` yfp1 ` xqq ` y “ p1 ` xqy ` fp1 ` x ` yq (1)
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Substituting P p1 ` cx, cyq instead, we obtain

fp1 ` cx ` cyfp1 ` cxqq ` cy “ p1 ` cxqcy ` fp1 ` cx ` cyq (2)

Note that

fp1`cx`cyfp1`cxqq “ fp1`cx`cyfp1`xqq “ fp1`cpx`yfp1`xqqq “ fp1`x`yfp1`xqq

and that fp1`cx`cyq “ fp1`cpx`yqq “ fp1`x`yq. By subtracting (1) and (2) we obtain
c2xy “ xy for all x, y, concluding that c2 “ 1. From here, one can proceed in numerous ways
(some of which have been highlighted in the previous solutions) to finish the problem.

Solution 4. (by Stefan Šebez)
Let P px, yq denote the given relation. Putting P p0, x ` yq gives us:

fppx ` yqfp0qq ` x ` y “ 0 ` fpx ` yq

Subtracting this identity from the relation P px, yq yields:

P px ` yfpxqq ´ P ppx ` yqfp0qq “ xy ` x

Suppose that fpxq ‰ fp0q for some x P R (thus in particular x ‰ 0). Then letting y equal
xpfp0q ´ 1q{pfpxq ´ fp0qq makes the left-hand side vanish, so that xpy ` 1q “ 0 and y “ ´1.
We conclude that, for an arbitrary x P R, either fpxq “ fp0q or fpxq “ xp1 ´ fp0qq ` fp0q.
Consider the values fpxq and fpxfp0qq. They are related by P p0, xq:

fpxfp0qq “ fpxq ´ x

Fix some x ‰ 0. Then, for this x, (at least) one of four possible cases holds:

• Case fpxq “ fp0q and fpxfp0qq “ fp0q

• Case fpxq “ fp0q and fpxfp0qq “ xfp0qp1 ´ fp0qq ` fp0q

• Case fpxq “ xp1 ´ fp0qq ` fp0q and fpxfp0qq “ fp0q

• Case fpxq “ xp1 ´ fp0qq ` fp0q and fpxfp0qq “ xfp0qp1 ´ fp0qq ` fp0q

The first case implies that x “ 0, a contradiction. The second gives fp0q2 ´ fp0q ´ 1 “ 0.
The third gives fp0q “ 0 and the fourth fp0q P t0, 2u.
It is now clear that fp0q “ 0 implies fpxq “ x for all x, and that fp0q “ 2 implies fpxq “ 2´x
for all x. We check that these two functions indeed satisfy the starting equation. If, on the
other hand, fp0q R t0, 2u, then the second case holds for all x ‰ 0 and hence fpxq “ fp0q for
all x. However, this is a contradiction with P p0, xq. Thus there are no more solutions.

10



Problem 4. There are n cities in a country, where n ě 100 is an integer. Some pairs
of cities are connected by direct (two-way) flights. For two cities A and B we define:

• a path between A and B as a sequence of distinct cities A “

C0, C1, . . . , Ck, Ck`1 “ B, k ě 0, such that there are direct flights between
Ci and Ci`1 for every 0 ď i ď k;

• a long path between A and B as a path between A and B such that no other
path between A and B has more cities;

• a short path between A and B as a path between A and B such that no other
path between A and B has fewer cities.

Assume that for any pair of cities A and B in the country, there exist a long path and
a short path between them that have no cities in common (except A and B). Let F be
the total number of pairs of cities in the country that are connected by direct flights.
In terms of n, find all possible values of F .

Solution
Use the obvious graph interpretation. We show that any such graph is one of the following:
the full graph Kn, the circular graph Cn, and for n even, the bipartite graph Kn

2
,n
2
.

First, we show that these graphs satisfy the condition.

• For Kn, we can choose any long path and the short path is be the edge.

• For Cn, we have exactly two paths between any two vertices, and one of them has at
most as many vertices as the other.

• For Kn
2
,n
2
, if the vertices are on different sides, the short path is the edge. Otherwise,

take any long path. We observe that it alternates between the sides and begins and
ends on one side. Therefore, there is a vertex on the other side that doesn’t appear in
the long path. Additionally, there is a short path that passes through this vertex.

Next, we show that only these graphs work for n large enough.
The graph is clearly connected, as any two vertices belong to a path. Consider a longest path
in the graph. Let p be its length and denote the vertices in the path by V1, V2, . . . , Vp in the
corresponding order. We can assume that this path is the long path between V1 and Vp that
has a corresponding short path through other vertices. We show that the edge V1Vp belongs
to the graph. If the edge doesn’t exist, the short path has length at least two, implying that
there is a vertex X different from Vi, i P t1, . . . , pu such that there exists an edge from V1 to
X. Then the path XV1V2 . . . Vp has length p ` 1, which gives a contradiction.
Next we show that p “ n, i.e. that the cycle V1 . . . Vp contains all the vertices. If there exists
another vertex A connected with an edge to a vertex Vi, then the path AViVi`1 . . . Vi´1 has
length p ` 1, which gives a contradiction. Since the graph is connected, the cycle contains
all vertices.
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For two vertices of the graph, we say that they have distance r if there are exactly r ´ 1
vertices between them on a side of the cycle. Observe that they also have distance n ´ r.
If we relabel the vertices by A1, A2, . . . , An in such a way that we know the graph has n ´ 1
of the edges AiAi`1, i P t1, . . . , nu (where An`1 “ A1), then it also has the last one. This is
shown same as before.
Next, we show that if we have an edge between Vi and Vj, then we also have an edge between
Vi`1 and Vj`1. Assume i ă j. Consider the path

Vi`1Vi`2 . . . VjViVi´1 . . . Vj`1

of length n. As before, we conclude that there is an edge between Vi`1 and Vj`1. Repeating
this, we get that if we have an edge between two vertices at distance r, then we have edges
between any two vertices at distance r.
Define S as the set of numbers 1 ď r ď n ´ 1 such that the graph has the edges of distance
r. Note that 1, n ´ 1 P S.
For positive integers a and b with a ` b ď n ´ 1, consider the ordering

V1, Va`b, Va`b´1, . . . , Va`1, Va`b`1, Va`b`2, . . . , Vn, Va, Va´1, . . . , V1.

The distance between two consecutive vertices in this ordering is 1, a, b or a ` b ´ 1. This
implies that if two numbers from the multiset ta, b, a` b´ 1u belong to S, so does the third
one. Now, if 2 P S, we take b “ 2 and easily get that that S contains any number from 1 to
n ´ 1. This gives us the solution Kn.
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Assume now 2 R S. This implies that we do not have two consecutive numbers smaller than
n ´ 2 in S. But as 2 R S, we also have n ´ 2 R S, so S doesn’t contain two consecutive
integers.
If S “ t1, n´1u, we get the solution Cn. Otherwise, there exists t P S such that 3 ď t ď n´3.
Consider the path

VtVt´1 . . . V2Vt`2Vt`1V1Vn . . . Vt`3

of length n.

Same as before, we get that there is an edge between Vt and Vt`3. Therefore, we have
3 P S. Now, taking b “ 3, we get that any odd number smaller than or equal to n ´ 1 lies
in S. Since we assumed S doesn’t contain consecutive integers, we get that n is even and
S “ t1 ď i ď n ´ 1 | i oddu. This gives us the solution Kn

2
,n
2
.

Finally, the number of edges can be n, npn´1q

2
, and if n is even it can also be n2

4
.

Remark: Even if n is not big enough, we still characterize all such graphs similarly. The
condition was added as at some point we choose a number t between 3 and n ´ 3, and this
wouldn’t make sense for small n and we would need to quickly discuss why those cases also
have the same graphs.
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